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Abstract—A linearized, purely differential equation for the radiative heat flux is obtained for a nongrey
gas that is in local molecular equilibrium and slightly disturbed from radiative equilibrium. This equation
is derived for a plane-parallel geometry by assuming that the spectral absorption coefficient can be repre-
sented by an arbitrary number of grey bands and by using the substitute-kernel (exponential) approxima-
tion. The order of the equation is 2NV, where N is the number of grey bands. The formulation of boundary
conditions for use with the equation is also discussed. The equation is applicable in one-dimensional
radiative-transfer problems whenever- small disturbances from a uniform reference state are being con-
sidered.

The utility of the equation is demonstrated by using it to solve a problem of radiative acoustics—specific-
ally, that of radiatively driven, harmonic acoustic waves in a gas between two walls. Analytical two-grey-
band solutions are obtained for the pressure response at the nondriving wall in what, practically speaking,
is a low- or moderate-temperature approximation. These two grey-band solutions are such that they can
be extended first to multiple grey bands by suitable summations, and finally to a continuous spectrum by
a transition to integrals over spectral frequency. This final extension, in effect, removes the original band-

model approximation in this particular acoustic problem.

NOMENCLATURE
Ag, Ar, isentropic and isothermal wave operators defined in equation (11);

a,b,a;b;,,a,,b,a, ,,b,, exponential-approximation constants;

ag,, isentropic sound speed ;

B,, monochromatic Planck function;

B;, Planck function integrated over a limited frequency range, see
equation (3);

Bo, Boltzmann number defined in equation (25);

Boj, Bo, ,, Boltzmann numbers for grey bands defined as in equation (11);

Bu, grey-gas Bouguer number defined on Fig. 1; ,

Bu; ;, Bu, ,, grey-band Bouguer numbers defined as in equation (11);

Bu,, spectral Bouguer number defined in equation (25);

Cps €, Cos C1 g0 constants used in acoustic-wave solution;

E,(2), exponential-integral function with argument z;

h, specific enthalpy;
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L, x location of right-hand wall;
A direction cosine of direction of radiative propagation;
N, number of grey bands;
p, pressure ;
N one-sided, monochromatic radiant heat fluxes;
qx, net monochromatic radiant heat flux;
q®, net radiant heat flux;
qr, net radiant heat flux in band j;
R, gas constant ;
T, temperature;
T, dimensionless amplitude of wall-temperature perturbation, see

equation (18);

T, wall temperature;

t, time;

u, velocity ;

X, space coordinate;

a, grey-gas absorption coefficient ;

O 1> %, 20 grey-band absorption coefficients;

oy monochromatic absorption coefficient ;

", ratio of specific heats;

v, spectral frequency;

Av,, spectral extent of a grey band;

0, density ;

o, Stefan-Boltzmann constant ;

o, velocity potential;

w, acoustic frequency.
Subscript

0, evaluated at the reference condition.
Superscripts

, perturbation quantity ;
- normalized quantity ;
, dummy variable of integration.

1. INTRODUCTION

THE GREY-GAS assumption in radiative transfer has been popular because it shows trends and in
some cases leads to qualitatively correct answers. However, in any comparison with experiment
or other attempt to provide quantitatively accurate calculations for a real gas, results on the basis
of the grey-gas approximation are not trustworthy. It is therefore desirable to have formulations
that are independent of this restriction. One such formulation, applicable in linearized transfer
problems, has been given by Gilles et al. [1], who used a modified (nongrey) substitute-kernel
approximation to simplify, essentially simultaneously, the spectral and angular integrations that
appear in the radiative heat-flux equation. The simplicity of such an approach is appealing; however,
evaluating the constants in the substitute kernel may be tedious, and the accuracy of the approxima-
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tion is open to question. We present here an alternative formulation, also for linearized problems,
based on the well-known idea of approximating the spectral variation of the absorption coefficient
by means of grey bands, i.e. by constant values within nonoverlapping spectral regions. In addition,
we restrict the problem to one spatial dimension and use the exponential approximation to the
exponential-integral functions. This band-model approach is similar to that employed by Liu
and Clarke [2] and Olfe and Cavalleri [3], who used two grey bands in conjunction with the dif-
ferential approximation for radiative transfer.

We begin in Section 2 by formulating a purely differential equation [equation (8)] for the perturba-
tion in radiative heat flux when radiative transfer occurs in an arbitrary number of grey bands.
The order of this equation depends on the number of bands and increases by two for each additional
band. We also discuss the formulation of boundary conditions for use with this equation. To show
the utility of the grey-band model, we use it in Section 3 to formulate the problem of radiatively
driven, harmonic acoustic waves in a gas confined between two parallel walls (cf Long and Vincenti
[4]). We then solve this problem in Section 4 for two grey bands with the approximation, valid at
low or moderate temperatures, that a certain grouping of dimensionless parameters is small and
thereby obtain analytical results for the pressure response at one of the walls. Finally, we generalize
these results to apply to a continuous spectrum by obtaining the pressure response in terms of
integrals over spectral frequency. This final step, in effect, removes the original grey-band assump-
tion from the acoustic results. This allows comparison with the solutions from Cogley and Compton
[5], who solved essentially the same problem but with a somewhat different approximation. We
will show that we can by the present approximation obtain results for one situation in which the
approximation used by Cogley and Compton fails.

The differential equation for radiative heat flux that will be derived [equation (8)] is not limited
to problems of radiative acoustics, but is applicable to any radiative-transfer problem in a plane-
parallel geometry as long as the variations in thermodynamic properties are small enough that
a linearized treatment is valid.

2. FORMULATION OF RADIATIVE HEAT-FLUX EQUATION

The geometrical arrangement consists of a radiating gas confined between two plane-parallel
walls. The left-hand wall located at x = 0 is a black body, while the right-hand wall at x = L is
a perfect reflector. For this one-dimensional geometry the one-sided perturbation heat fluxes
(right- and left-directed respectively) can be written as (cf [1])

. . dB ‘
R =2n—=2 {T;,E3[av°x] + jav T'E,[a,(x — %] di},
dT |, o o
0
L
R dB, , , o ge
=2 T T, Es[a, 2L — x)] + | o, T'E,[2,2L — x — %)] dX
0

0

L

+ javoT’EZ[aVO(i - x)] di} (1)
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The subscript 0 denotes the undisturbed reference condition, for which radiative equilibrium
prevails, and primed quantities are small perturbations from that condition. For example, the
temperature is given by T = T, + T". The quantities «, and B, are the monochromatic volumetric
absorption coefficient and Planck function respectively. The perturbations in temperature of the
gas and the left-hand wall are given by T’ and T, The quantity E, is the exponential-integral
function of order n defined by

1
Ef(z) = {exp(~z/Hr~2dl
4]

Tixe net monochromatic heat flux g% is obtained by combining equations (1) according to g% =

v; - QR:

In order to perform the spectral integration of equations (1), we assume that the spectral variation
of the absorption coefficient is given by a series of non-overlapping grey bands, ie. «,, = a;, within
Av; Obviously, by choosing many bands we can in principle approximate any actual spectral
variation. Also, as is often done in one-dimensional radiative transport, we assume that the expo-
nential-integral functions can be satisfactorily approximated as pure exponentials. Here we use a
separate exponential approximation for each of the grey bands, ie.

E z)) ~ abi " exp(—b;z)).

We make this multiple exponential approximation because values for 2 and b that give good
accuracy for a grey gas or for a single grey band can sometimes be found either from comparison
between exact and approximate solutions (e.g [5]) or by matching certain properties of the exact
and approximate E functions in limiting cases (e.g. [6]). These values for g and b that provide good
precision usually depend on the optical thickness of the gas and hence on the value of the grey-gas
or single-grey-band absorption coefficient. Thus, in an application of the present technique, the
user can if he wishes choose values for a; and b, that are based on the individual optical thicknesses
or absorption coefficients of his multiple grey bands.

With the multiple-grey-band assumption and the exponential approximation we can write the
net flux g% in each band as

= 2?{&;% o{% {exp{—bu; x] —exp[ b, (2L — x}]} +Jai0’f’ exp [ —bu;(x — X)]dx
z
0
L L
- jafﬂT’ exp [ —bo; (2L — x — X)]dX — V{%}T’ exp [ —bu; (X — x)] dfc}* (2)
0 x
where
dB; dB
— =} 20 de 3
aT J‘ I Od& (3)

Ay

The total flux g¥ that interacts with the gas is obtained as in [1] by integrating g¥’ over those spectral
frequencies for which the absorption coefficient «,  is nonzero and is given by
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N
- adv= Y @

%, %0
where N is the number of grey bands.
As in the grey-gas situation, a purely differential equation for ¢} can be obtained by differentiating
equation (2) twice with respect to x and eliminating the common terms between the resulting equa-
tion and equation (2) to give

2R’ ’
. T ,
axé 47!“}&30 dT x - bf fo ? =0 5)

In a similar manner, a radiative boundary condition at x = 0 for each band can be obtained by
eliminating terms between equation (2) and its first x derivative, both evaluated at x = 0. We thus
obtain

aqr dB;
[ gx ~ by ]qujl L= dmas, g T{ (T, = T (6)
This boundary condition expresses the energy balance for an element of gas at x = 0 for radiative
transfer in band j.

A radiative boundary condition at x = L for each band can also be written by noting that there,
owing to the presence of the perfectly reflecting wall, the net flux must be zero, that is,

[qi_l’]sz = 0. (7)

The sets of equations represented by equations (5) and (6) are coupled through the temperature.
Their solution must therefore be performed simultaneously.

In some problems (particularly those of radiative acoustics), it is often convenient to use a single
differential equation that governs the total radiative flux. Such an equation can be obtained by
eliminating the quantities g¥ between equation (5) and its even x derivatives in favor of the total
flux g® and its x derivatives as obtained from equation (4). A systematic procedure for accomplishing
this same end is to combine equations (2) and (4) and differentiate the resulting equation 2N times
with respect to x. We then eliminate from the evenly differentiated equations (including the zeroth
derivative) the integral terms, the terms containing the wall temperature, and the terms containing
the gas temperature evaluated at the wall. Either procedure yields

N N
0? .0
H (5;2‘ - b?aﬁ,)qR ~ i Z {47‘“;% dT‘ H ( a,fo)T’} =0,N>1 (8

This is a 2N-order differential equation for g®’ It can easﬂy be combined with the gas-dynamic
small-perturbation equations as we show in the next section. The restriction N > 1 is imposed here
merely to allow us to write the equation in a compact form. When expanded for a given value of N,
equation (8) contains all the equations for smaller values of N, including N = 1. These equations
can easily be recovered by setting as many of the «;’s (or Av;’s) as required to zero and then integrating
twice with respect to x for each band that is dropped.

The radiative boundary conditions at x = 0 for equation (8) can be obtained in differential form
by a similar process. We again combine equations (2) and (4) and differentiate the resulting equation
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2N — 1 times with respect to x. We next specialize these equations to x = 0 and choose from them
N sets of equations with each set containing N + 1 equations. We then eliminate the integral terms
from within each of the N sets of equations to obtain N boundary conditions. Because the N sets
of N + 1 equations can be chosen in more than one way, the boundary conditions are not unique.
All the sets of boundary conditions that can be derived are nevertheless equivalent. We have not
discovered any compact way in which to write these conditions and, since they are lengthy, will not
include them here.

At the reflecting wall the situation is less complicated. There the net heat flux ¢® is zero and its
first N — 1 even x derivatives, written in terms of the even x derivatives of equation (2) and specialized
to x = L, yield the remaining required boundary conditions. This simplification depends, of course,
on our present choice of a wall that reflects perfectly. If, for example, the wall were black, or only
partially reflecting, we would obtain other boundary conditions there.

With the differential equation (8) and its boundary conditions, we have, in principle, a closed
set of equations from which, given the perturbations in temperature of the gas and wall, we can
compute the perturbation in radiative heat flux. Note, however, that the differential equation itself
does not depend on the presence of the two walls, and holds in the absence of either or both.

3. APPLICATION TO RADIATIVELY DRIVEN HARMONIC ACOUSTIC WAVES

In this section we formulate a radiative-acoustic problem using the grey-band model of the previous
section. The problem chosen is that of one-dimensional, radiatively driven, harmonic acoustic
waves. This problem has been previously solved on the basis of the differential approximation by
Long and Vincenti [4], who used a digital computer to obtain numerical results. A similar problem
has also been solved by Cogley and Compton [5], who included a term in the equations of motion
to account for the presence of viscous damping at the sidewall of an enclosing cylindrical tube.
In addition, they approximated the right-hand sides of equations (1) by neglecting the integral
terms and by virtue of that approximation were able to obtain analytical results independent of
both the grey-gas and exponential approximations. Here we proceed analytically and will obtain
results for comparison with both of the previous investigations.

The small-perturbation equations for one-dimensional time-dependent flow of a thermally
perfect, radiating gas can be written [7] as

ap’ o’

Mass: n + Pozy = 0, (9a)
ou  op
: —+ =0, 9b
Momentum Poz + 5y (9b)
on  op’ oq®
Energy: Pogr ~ 3 = f el 9¢)
®,, #0
Bo— 0 P _po > (9d)
70 — 1 (Po s P

State :

1/p  po >
T ==+ -5 p'), (9e)
R (Po 1% g
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where ¢ is the time, «/, /', p’ and p’ are the perturbations in velocity, specific enthalpy, pressure and
density, respectively, and y is the ratio of specific heats. We define a velocity potential ¢ such that

v = 0¢/0x and p' = — p,0¢/0t, which identically satisfies the momentum equation (9b). We next
eliminate the thermodynamic variables from equations (9) in favor of the potential to obtain
1 92 o? Yo — 1 oq®
Sy g 2 gy, (10)
ag, Ot 0x Pods, 0x
%, #0

where ag, is the isentropic speed of sound given by as, = (70po/P0)-
We now define the following dimensionless variables, parameters, and operators:

- aso ’ - ’ - aéo L3
4p0ag o as
B j = > s B P = Jo" 2o s 11
% nTy(7o — 1VdBydT|, Ui © ( (11)
=T 0, _ Pp %
STor ok TG TR J

The quantities Bo; and By, are the Boltzmann and Bouguer numbers [7] written here for each of
the spectral bands, w is the radian frequency of the acoustic waves, and Ag and A, are the isentropic
and isothermal wave operators. The isentropic operator Ag is the normalized left-hand side of
equation (10) and is related directly to the radiative heat flux through that equation; the isothermal
operator Ay is related to the perturbation temperature by 4, = —8T /ot where T = T'/T,. These
relations and the normalizations (11) allow us to write equation (8) as an equation for the normalized
velocity potential. In terms of 45 and 4, equation (8) becomes

N N N
0 0? 0? 16a;Bu; 02
a"f| |(a7—<z"’?3“?>f‘s='a-22{ f;’o.’l I(E{z"’fB”f)AT}’N“- (12)
=t
J

Equation (12) is a linear partial differential equation of order 2N + 3 that governs acoustic waves
in the presence of radiative transfer occurring in N grey bands. As before, the restriction N > 1 is
imposed only to allow us to write the equation in this compact form. When expanded and specialized
to a grey gas, equation (12) reduces properly to the grey-gas equation [7].

We are considering harmonic acoustic waves here. We therefore let

2N
¢ =) Cpexp(c,X + i), (13)
m=1

and substitute this expression into equation (12) to obtain the characteristic equation for the 2N
complex quantities c,,. (The quantities C,, are found by application of the appropriate boundary
conditions, which can also be written in terms of ¢.) This procedure gives c,, as the roots of the alge-
braic equation
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N
N 16a;Bu; N
(=1 = )] (- b2Bud) = — (=70 — ) CZZ{—B‘%& [T * - b,fBu,f)}, N>1 (14)
L i k=1

ji=1
i=1 k#j

This is as far as we will carry the analysis in so general a form. Equation (14) could, of course, be
solved by means of digital computer for arbitrary values of the parameters. We present instead an
approximate solution and further restrict the analysis by using only two grey bands. This latter
restriction will eventually be removed by inspecting the form of the solution.

4. TWO GREY-BAND SOLUTION
For two grey bands the differential equation (12) becomes

d (02 Vi
55 (ﬁ — beuf)(&_—i — b%Bu%) AS

0% [16a,Bu, [ &> 16a,Bu, { 6*
= — 0_)?7[ Blo ! (ﬁ - bgBu§> + —ﬁ—’(a? — beuf)] A, (15)
1 2

and the characteristic equation (14) reduces to
(c? — b2Bu?)(c* — b3Bu3)i(—1 — ¢?)

16a, B 16a,B
- [P - ymay + B - |l -] 9
1 2

Inspection of the characteristic equation suggests that the analysis can be simplified considerably
if we assume both 16a,Bu,/Bo, and 16a,Bu,/Bo, < 1 For the moment we regard this as merely a
mathematically convenient assumption; we will show later that it has physical utility as well. We will
describe it for simplicity as the approximation 16aBu/Bo < 1. With this approximation we can easily
obtain the roots ¢, of the characteristic equation as expansions in powers of 16aBu/Bo. To order

16aBu/Bo we thus obtain

70 — N6a,Buy (7o — 1\16azBu2
R 2/ Bo, 2 ]/ Bo,
2= 1 1 + b?Bu? 1 + b3Bu?

_16a,Bu (7o + b3Bu?)
€.4= % blB‘“(’ Bo,. (1 + b{Bu§)+ '

. 16a,Bu,(yo + b}Bu3) )
= b 1 -
¢s.6 = + baBu <’ Bo, (I + b2Bul) "

These roots give the wave speed and damping of the various left- and right-running acoustic
waves in the system. The first two roots ¢, , represent modified-classical waves travelling at the
isentropic wave speed and damped slightly by the presence of radiative transfer. Note that for these

(17)




MULTIPLE-BAND FORMULATION FOR RADIATIVE TRANSFER 27

waves there is a separate contribution to the damping from each of the spectral bands. The other
four roots represent the so-called radiation-induced waves [6, 7]. For this two-band model there are
two sets of such waves, in contrast to the situation for a grey gas [7], where there is only one set.
The additional set of radiation-induced waves is a direct consequence of the higher order of the
present differential equation compared with that for a grey gas. To the present order of approxima-
tion, each set is due solely to the presence of one of the spectral bands. In this sense then, the wave
speeds and dampings of these waves are uncoupled.

The extension of these approximate roots to include more bands is obvious: for each new band
we add a damping term to the roots for the modified-classical wave, and write a new set of roots for a
radiation-induced wave.

The amplitudes of the various waves are determined by the driving disturbance and boundary
conditions. For the driving disturbance we assume that the waves are radiatively driven by a har-
monic perturbation of the temperature of the wall at X = 0 according to

T, = Te" (18)
where T, is the dimensionless amplitude of the driving disturbance.
Six boundary conditions are required. The first two of these are the fluid-dynamical conditions
that the velocity must be zero at both walls, i.e.
pen
A

= 19
0x FandL = 0 (19)

where L = Lw/ag, At the driving wall two radiative boundary conditions are found by the procedure
described in Section 2. One of these is, in terms of Ag and A;.

<1 16a1Bu1/Bo,> 024, %A

dT, 16a,Bu,/Bo, /| 0x> ox*
di (l_bgsui) b3Bu;  b2Bu’
biBu3
0Ar 0*As  Ag
0% Bo, b2 Bu? o0x%0t  0x%0t
b,Bu, 16a,Bu, |\ b3Bu? — biBu?/ \b3Bu;  b3Bu?
82 Ag
b?Bu? o0x0t  0Ag
~ s 20
+(b33u§—b§3u§ b,Bu, o (20

x=0

The other condition (not shown) is obtained simply by reversing the grey-band subscripts in this
equation. At the reflecting wall and for harmonic waves the two radiative boundary conditions
simplify to

@

—0 21)
ep 0% (

x=L
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In deriving the conditions (21) use has been made of the velocity boundary conditions (19). In none
of the boundary conditions (20) and (21) however have we assumed that 16aBu/Bo < 1. They could
thus be used, if desired, to obtain a more general solution to the problem.

We now have sufficient conditions for a solution, since application of the six boundary conditions
and equation (18) allows computation of the six constants C,,. The algebra is lengthy and will not be
repeated here. The desired result is the pressure response at the reflecting wall, which we present for
two representative conditions: (1) a nonresonant condition in which the distance between the walls
is one-quarter of the classical acoustic wavelength (L = n/2), and (2) a resonant condition in which
the distance is one-half the classical acoustic wavelength (L = 7). In deriving these pressure-response
equations we make continuing use, where necessary, of the approximation 16aBu/Bo <« 1; the
results are thus applicable only in that approximation. With p = p'/p,, the solutions are as follows:
For the nonresonant case

yobyBuy16a,Bu, [1-
Ax=L=n2 2 Bo,
—iTe" 1 4+ b2Bu?

exp (—nb,Bu,)]

M%[l exp( n—b Bu )]
- ) 2.

+ 2 Bo,
1 + biBu3
16a,B 16a,B
yo—aiiexp — EblBu, Yo e exp | — EIJ23142
+ Bo, 2 + Bo, 2 (22)
1 + biBu} 1 +b3Bu3 ’
and for the resonant case
16a,B
o b, Bu, 16a,Bu, b, Bu, a,Bu,
(X =L =mn) ] Bo Bo
P ; _ 7 1 + 2
Te" 9o —1|(1+ b*Bu?)(1 + cothmb,Bu;) (1 + b3Bud) (1 + coth wb,Bu,)
16a,Bu,
J BB TR & N b2Bu? 7
“|TT+b2Bu | 2b,Bu, (1 + bBud)(l + coth b, Bu,) |
16a,Bu, -1
boBu; Bo, n b3 Bu?
1 + b2Bu3 |[2b,Bu, (1 + b3Bu?)(1 + coth nb,Bu,)
16a,B
yomexp(—nblBul) ',r'o—az—uzexp(—nszuz)
. B01 , BOZ
— i — i (23)

(1 + b?Bu?) (1 + b3Bu3)
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For present purposes our principal interest in these solutions is to show from them the contri-
butions and interactions (if any) of the two bands in producing the total response, so that we can
generalize the solutions to multiple bands and thus improve the accuracy of spectral computations

Consider first the response for the untuned condition [equation (22)]. Here the pressure is given
by a sum containing four terms, all of which are of order either 1/Bo, or 1/Bo,. The response from
the single set of modified-classical waves is given by the first two terms, with each of these terms
representing the contribution from one of the grey bands. The responses from the two sets of
radiation-induced waves are given respectively by the last two terms, with each of these terms
being due to oniy one band. Thus, for this untuned condition the pressure responses resulting from

the two bands are uncoupled. If we had derived the one-grey-band equivalent of equation (22) we
would have obtained only the first and third terms [8] We can also recover the one-band solution

directly from equation (22) either by setting one of the Bu’s to zero or one of the Bo’s to infinity
(the latter corresponds to setting a bandwidth Av to zero) or by setting the Bu’s equal and summing
the 1/Bo’s.

To generalize the untuned response for additional grey bands we need only add, for each of the
additional bands, two more terms of the same form as those that already appear in equation (22).
Following this approach we can extend the equation to an infinite number of grey bands each with
spectral bandwidth dv, and thus obtain the response as an integral over spectral frequency. We
accomplish this formally by first noting that as Av; — 0, 1/Bo; is proportional to Av; [see equations
(11) and (3)], and by then using the definition of an integral as the limit of a sum.* This procedure
gives p as

px=L=m2) 8y a,Bu, dB,dT|,
“iT,e¥ ~ Bo | (1+b2Bad) 4T

a, #0

{b,Bu,[1 — exp(—=b,Bu,)]

+ 2exp [—(n/2)b,Bu,]} dv. (24

In writing this equation we have redefined the Boltzmann and Bouguer numbers so that Bo is based
on an infinite bandwith and Bu is based on the spectral absorption coefficient as follows:
Bos  PoBy o s,
=l —DoTd T o 23)
where o is the Stefan—Boltzmann constant. The quantities a, and b, are exponential-approximation
constants that (as discussed just prior to equation (2)) could be chosen, if desired, on the basis of the
optical thickness of the gas at frequency v.

Consider now the tuned response given by equation (23), which has a somewhat different form from
that of equation (22). The first term-—the ratio of the two factors in braces—is due to the modified-
classical waves and has contributions from each band appearing in both numerator and denominator.
Each of these contributions is of order either 1;Bo, or 1,Bo,, so that as far as the dependence on Bo
is concerned the response due to these waves is of order 1. Here, in contrast to the untuned situation,
the way in which the two bands produce the response from the modified-classical waves is coupled :
that is, the response is not simply a single sum of terms with one term from each band, but is the
ratio of two sums. If we had derived the one-grey-band equivalent of this part of the response, we

* The damping of the modified-classical wave from equation (17) can also be written as an integral over spectral frequency
by use of this technique. Such an expression might be useful for computing radiative damping of acoustic waves in planetary
atmospheres (cf. Gille [9)) in which the assumption 16aBu/Bo < 1 is usually well satisfied.
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would have obtained a fraction that contained identical terms as in equation (23), but for only one
band. This is exactly the same equation that we recover by specializing equation (23) to one band
following the procedure mentioned earlier.

A physical interpretation of the tuned response from the modified-classical waves is helpful
in justifying our subsequent extension of this response for multiple bands. In the numerator of that
response the term from each band is proportional to the energy input to that band from the wall,
while in the denominator the term from each band is proportional to the radiative damping, due
to that band, of the modified-classical waves [see equation (17)]. Hence the contribution to the
response from energy input into only one band is affected by the damping due to both bands. The
complete tuned response from the modified-ciassical waves is the sum of such contributions.

The contribution of the radiation-induced waves to the tuned response is given by the last two
terms in equation (23). This part of the response is similar to that in equation (22) for the untuned
waves, both in algebraic form and in the fact that the contributions from the two bands are again
uncoupled.

Despite the coupling of the bands in producing the response for the modified-classical waves,
the generalization of equation (23) to include more bands is straightforward on the basis of the physical
interpretation given above. For each new band we add terms, of the same form as already appear in
equation (23), to the numerator and denominator of the fraction giving the response from the
modified-classical waves, and to the sum of the terms giving the response from the radiation-induced
waves. As before, we can further extend equation (23) to a continuous spectrum by generalizing
to integrals over spectral frequency. Here we require three integrals, since there are three sums.
In integral form the response becomes

ﬁ(i = E = 7'[) _
TAeif -
f . a,b,Bu? dB,/dT|,
) (T + BZBu)(T + coth nb,Bu) doT3m
e o
70 — 1 a,b,Bu? n bZBu? dB,/dT], dv
(1 + b2Bu?)| 2b,Bu, = (1 + b2Bu?)(1 + cothnb Bu,) | 46T3m

2, #0

. 167, f a,Bu, exp (—nb,Bu,) dBv/dT|o & (26
Bo (1+ b2Bud)  4oT3/n
a,, #0

This equation is unusual in that it cannot be written as a single integral over spectral frequency,
yet it represents a closed-form solution to a problem in radiative gas dynamics in which the details
of the spectrum can be treated without approximation. We known of no way, other than the present
generalization of the grey-band approach, by which this equation can be derived. It cannot, for
example, be derived by the method of Cogley and Compton [5], because the terms neglected at the
outset in their approximation are instrumental in producing equation (26).

Note that the Boltzmann number does not appear in the part of equation (26) resulting from the
modified-classical waves. The resonant response is thus independent of Bo when these waves are
dominant, which, because they are strongly enhanced due to resonance, occurs for all except very
small values of Bu. This independence of Bo was also found numerically by Long and Vincenti
[4] for a grey gas and large Boltzmann numbers.
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We now discuss briefly the meaning and range of applicability of the approximation 16aBu/Bo < 1.
For simplicity, we confine ourselves to a grey gas, which in no way changes the essentials of the
discussion. In terms of physical quantities and for a grey gas, 16aBu/Bo can be written as

o0

1 4naa, Jc(i;;v T
16aBu @ FPo g Cllo
Bo K
1 4nax, <40'T3> T
W P n
= 27
- (27)

The quantity in the numerator on the right-hand side of this equation is the perturbation in spon-
taneously emitted radiative energy in time a/w per unit mass of gas; the quantity in the denominator
is the perturbation in specific enthalpy. Hence, the present approximation states that the ratio of
these two quantities must be small. At low and moderate temperatures this ratio is in fact small
unless the absorption coefficient is very large or the acoustic frequency very low. The approximation
therefore applies well in laboratory situations [8] and in planetary atmospheres. In stellar atmos-
pheres, on the other hand, where temperatures are high, it would not be expected to apply well,
if at all.

We now discuss briefly the relationship of the present work to that of Cogley and Compton [5].
The untuned response obtained here is essentially the same as that obtained in [5]. In fact, with
the appropriate specializations and changes in nomenclature, the substitute-kernel counterpart of
equation (41) of Cogley and Compton becomes identical with the monochromatic counterpart of
the present equation (24). In contrast, the tuned responses are considerably different. The reasons
for these facts reside in two important differences between the analyses, both of which affect the
tuned, but not the untuned response.

The first of these is the presence of viscosity in the Cogley-Compton analysis. As mentioned at
the beginning of Section 3, Cogley and Compton incorporated into the equations of motion a
viscous term (to account for effects at the sidewall of a tube), which causes a viscous damping of the
acoustic waves. (We could also have included that term in the present analysis, but we omitted it
in order to emphasize the spectral aspects of the problem.) Because in the untuned situation the
gas motion is small, the viscous damping has no influence (to the order of the solution) on the
untuned response of [ S]. Hence it is permissible to ignore the viscous aspect of the Cogley-Compton
analysis in making the comparison be¢tween that work and the present work for the untuned
situation. For the tuned situation, however, where gas motion is relatively large, the presence of
the viscous damping exerts an important influence and leads to the differing results.

The second difference between the analyses is in the way the assumption 16aBu/Bo < 1 has been
applied. Cogley and Compton in effect made the assumption at the outset that the temperature
perturbation in the gas relative to the temperature perturbation of the wall, T'/T, was a small
quantity of order 16aBu/Bo and, consistent with this assumption, retained terms of order 16aBu/Bo
in their analysis. The present work makes the less restrictive assumption that 16aBu/Bo < 1, which
places no restriction on the size of the temperature perturbation [other than that it is small enough
to satisfy the small-disturbance equations (1) and (9)]. For the untuned situation, the temperature
perturbation computed on the basis of the present approximation is indeed found to be of order
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16aBu/Bo ; hence the agreement of equation (24) with the Cogley—Compton analysis. For the present
tuned situation, with the only damping being radiative, T'/T,, is found to be of order unity, thus
violating Cogley and Compton’s basic assumption. In fact, their method, when applied to the
present inviscid problem, predicts an infinite tuned response. They were able in their work to
obtain an expression for a tuned response only because they included the side-wall viscous damping
As noted in their paper, their tuned result is valid only when the viscous damping is much larger
than the radiative damping of the modified-classical wave; and the converse, obviously, is true of
the present, inviscid, tuned result.

|
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100+ Ref. [4], =7
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Fi1G. 1. Dimensionless pressure amplitude at reflecting wall
as a function of Bu for a grey gas with y, = 1-25.

Finally, in Fig 1 we compare the present results, specialized to a grey gas, with the results given
by Long and Vincenti. Those authors did not make the assumption that 16aBu/Bo < 1, but did
a complete numerical solution (computer-generated) to the full linearized grey-gas equations
In making this comparison we have chosen a = 1 and b = /3 to correspond (approximately) to
Long and Vincenti’s use of the differential approximation. The agreement is seen to be very good
The small differences result primarily from a slight difference between the radiative boundary
conditions derived for the differential approximation and those derived for the exponential approxi-
mation with @ = 1 and b = /3. This comparison in effect verifies the validity of the approximation
16aBu/Bo < 1 for the range of parameters shown on Fig 1

5. CONCLUDING REMARKS

The development of the differential equation (8) for the multiple-band radiative heat flux is
dependent here on both the one-dimensional geometry and linearization of the radiative-flux
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equation. These specializations are appropriate for the application to one-dimensional radiating
acoustic flow. Neither, however, is critical. Equation (8) can be generalized both for multi-dimen-
sional geometries within the framework of the differential approximation, and also for a nonlinear
situation. References [2] (multi-dimensional, nonlinear) and [3] (one-dimensional, nonlinear)
provide two-grey-band examples. The application of this technique is thus not restricted to problems

of radiative acoustics.
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FORMULATION A BANDES MULTIPLES POUR LE TRANSFERT PAR RAYONNEMENT
DANS UN GAZ LEGEREMENT TROUBLE, AVEC APPLICATION A DES ONDES
ACOUSTIQUES SE PROPAGEANT DE FACON RAYONNANTE

Résumé—Une équation différentielle linéarisée relative & un flux de chaleur rayonnant est obtenue pour
un gaz non gris qui est en équilibre moléculaire local et qui est 1égérement perturbé autour de son équilibre
rayonnant. Cette équation est établie pour une géométrie a plans paralléles en supposant que le coefficient
d’absorption spectral peut étre représenté par un nombre arbitraire de bandes grises et en utilisant I’approxi-
mation (exponentielle) apprdpriée. L’ordre de I’équation est 2 N ou N représente le nombre de bandes grises.
On discute la formulation des conditions aux limites associées a I’équation. L’équation est applicable aux
problémes de transfert par rayonnement monodimensionnel chaque fois que ’on considére des petites

perturbations a partir d’un état de référence uniforme.

L’intérét de I’équation est démontré en I'utilisant pour résoudre un probléme d’acoustique, spécifique-
ment celui d’ondes acoustiques harmoniques conduites de fagon rayonnante dans un gaz entre deux parois.
Des solutions analytiques concernant deux bandes grises sont obtenues pour la réponse de pression a la
paroi non émettrice sur laquelle existe une approximation de température basse ou modérée. Ces solutions,
relatives aux deux bandes grises sont telles que ’on peut les étendre d’abord & de multiples bandes grises
par les sommations adequates, et finalement & un spectre continu par un passage a des intégrales sur la
fréquence spectrale. Cette extension finale, en effet, modifie ’approximation originale du modéle de bandes

dans ce probléme d’acoustique particulier.
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EIN VIELBANDENANSATZ FUR DEN STRAHLUNGSAUSTAUSCH IN EINEM LEICHT
GESTORTEN GAS, MIT ANWENDUNG AUF STRAHLUNGSBEDINGTE AKUSTISCHE
WELLEN

Zusammenfassung—FEine linearisierte Differentialgleichung wird angegeben fiir den Wirmefluss durch
Strahlung im Falle eines nicht-grauen Gases, das in lokalem molekularem Gleichgewicht steht und vom
Strahlungsgleichgewicht her leicht gestért ist. Diese Gleichung wurde fiir eine plan-paraliele Geometrie
abgebildet, wobei fiir die spektralen Absorptionskoeffizienten eine willkiirliche Anzahl von grauen Banden
angenommen und die (exponentielle) “Ersatzkernnihcrung™ verwendet wurde. Die Gleichung ist von 2
N-ter Ordnung, wobei N gleich der Anzahl der grauen Banden ist. Es wird auch das Aufstellen von Rand-
bedingungen zum Gebrauch der Gleichungen diskutiert. Die Gleichung ist bei allen Problemen ein-
dimensionaler Warmestrahlunganwendbar. falls kiein Abweichungen von einem homogenen Bezugszustand
betrachtet werden.

Die Brauchbarkeit der Gleichung wird dadurch gezeigt, dass mit ihrer Hilfe ein Problem der *Strahlungs-
akustik - speziell das der durch Strahlung verursachten harmonischen akustischen Wellen in einem Gas
zwischen zwei Wianden-—gelost wird. Analytisch werden Zwei-Graubanden-Losungen fiir das Drucksignal
an der passiven Wand abgeleitet, was, praktisch eine Niherung fiir niedrige oder mittlere Temperaturen
darstellt. Diese Zwei-Graubanden-Losungen sind so geartet, dass sie zunichst durch passende Summationen
zu Viel-Graubanden Lésungen erweitert und schliesslich auf ein kontinuierliches Spektrum durch den
Ubergang zu Intergralen iiber die spektralen Frequenzen verallgemeinert werden konnen. Diese letzte
Verallgemeinerung beseitigt in diesem spezietlen akustischen Problem die urspriingliche Banden-Modell-

Néiherung.

MHOTOIIOJJOCHAA TPAKTOBHKA JIVUUCTOI'O NEPEHOCA B CJIABO
BO3MVYIIEHHOM TA3E B IIPUJIOKEHNUU K TEHEPUPYEMbBIM
M3JIYYEHUEM AKYCTUYECKIM BOJHAM

Annoramua—IlonydeHo NuHeapus0BaHHOEe cyry6o mmddepeHnmanbHOe ypaBHEHHE JLyYHC-
TOTO TEILIOBOTO IIOTOKA JJIA HECeporo rasa, HAXONAIEIOCH B JIOKAJIbHOM MOJEKYJISAPHOM
PABHOBECHM M CIETKa OTKJIOHAINEr0CA OT JIYINCTOr0 PaBHOBECHA. JTO YpABHEHUE BHIBEJEHO
A IOCKONApaJIeNbHOM reOMeTpIH B IPEINOI0HKEeHIH BOSMOMHOCTH BHIpAKeHNA KO3 (pPuL-
HEHTa CHEKTPAJbHOTO MOINIOLIEHNA Yepe3 IMPOM3BOJBHOE YHCIO CEPHIX NMOJ0C U C MOMOINBIO
(pKCIOHEHIMATLHOIE) ANIIPOKCHMAINY IIyTeM 3aMeHHl AApa. [lopAgok ypasHeHUA paBeH 2N,
rie N ecTb YUCI0 CePHIX NOJI0C. PacCMOTpeHs! TaKiKe rpAHMYHBIE YCIOBHA JAHHOTO YPAaBHEHUA .
YpaBHeHHE MOMKHO MCIIOIB30BATE B OGHOMEPHBIX 3aaYaX JIYYUCTOrO [IEPEHOCA [P PaccMOT-
peHMH HeGOJbINX OTKIOHEHHH OT OXHOPONHOI0 HAYAIHHOI0 COCTOSTHUA.

[IpumenuMocTh ypaBHEHHA HEMOHCTPHPYETCH HA INpHUMepe pelleHMA 33aJaud Jy1MCTON
AKYCTMKH, a MMEHHO, Ha IIPHMEpe IeHePHPYeMBIX M3jIy4eHHeM aKYCTHYeCKUX BOIH B rase
MEMIY ABYMA CTeHKaMu. PelieHud ¢ ABYMSA CEpHIMM MOJIOCAMU TOJYYeHEl JJIA M3MEHEeHHS
AaBJICHMH HA HEIOJABHKHON CTEHKE C TOMOMIBI ANIPOKCUMALUHM HMBKUX WM CPeTuHx
TEMIIEPATYDP. STH PelleHHA ¢ ABYMSA CEPHIMU NOJOCAMH NPECTABIAIOT co00lt TaKkue PeIleHns,
KOTODEIE IyTeM BBIIOJHEHUA COOTBETCTBYIOLIMX CYMMIDOBAHMI CHAYaJa MOMHO IPAMEHUTDH
K MHOTOYMCIEHHBIM CEepBIM IIOJIOCAM M, HAKOHel[, K O0eCKOHEYHOMY CHeKTPy ¢ TOMOIUIBIO
Mepexofa K HHTerpaiaM [0 CHeKTPaibHOM vacroTe. DaKTUYeCKH NHOCHefHEe UCKIHYaeT
HEPBOHAYAILHYIO AIIPOKCUMALUIO C [IOMOINBI0O MOJIETN IOJIOC B 3TOI YaCTHON aKycTHIecHoU

3anadve.



