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Abstract-A linearized, purely differential equation for the radiative heat flux is obtained for a nongrey 
gas that is in local molecular equilibrium and slightly disturbed from radiative equilibrium. This equation 
is derived for a plane-parallel geometry by assuming that the spectral absorption coefficient can be repre- 
sented by an arbitrary number of grey bands and by using the substitute-kernel (exponential) approxima- 
tion. The order of the equation is 2N, where N is the number of grey bands. The formulation of boundary 
conditions for use with the equation is also discussed. The equation is applicable in one-dimensional 
radiative-transfer problems whenever. small disturbances from a uniform reference state are being con- 
sidered. 

The utility of the equation is demonstrated by using it to solve a problem of radiative acousticsspeciftc- 
ally, that of radiatively driven, harmonic acoustic waves in a gas between two walls. Analytical two-grey- 
band solutions are obtained for the pressure response at the nondriving wall in what, practically speaking, 
is a low- or moderate-temperature approximation. These two grey-band solutions are such that they can 
be extended first to multiple grey bands by suitable summations, and finally to a continuous spectrum by 
a transition to integrals over spectral frequency. This final extension, in effect, removes the original band- 

model approximation in this particular acoustic problem. 
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NOMENCLATURE 

isentropic and isothermal wave operators defined in equation (11) ; 
exponential-approximation constants ; 
isentropic sound speed ; 
monochromatic Planck function ; 
Planck function integrated over a limited frequency range, see 
equation (3) ; 
Roltzmann number defined in equation (25); 
Boltzmann numbers for grey bands defined as in equation (11) ; 
grey-gas Bouguer number defined on Fig. 1; 
grey-band Bouguer numbers defined as in equation (11); 
spectral Bouguer number defined in equation (25) ; 
constants used in acoustic-wave solution; 
exponential-integral function with argument z ; 
specific enthalpy ; 
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x location of right-hand wall ; 
direction cosine of direction of radiative propagation ; 
number of grey bands ; 
pressure ; 
one-sided, monochromatic radiant heat fluxes ; 
net monochromatic radiant heat flux; 
net radiant heat flux ; 
net radiant heat flux in band j; 
gas constant; 
temperature ; 
dimensionless amplitude of wall-temperature perturbation, see 
equation (18); 
wall temperature; 
time ; 
velocity ; 
space coordinate ; 
grey-gas absorption coefficient ; 
grey-band absorption coefficients ; 
monochromatic absorption coefficient; 
ratio of specific heats ; 
spectral frequency ; 
spectral extent of a grey band ; 
density ; 
Stefan-Boltzmann constant ; 
velocity potential ; 
acoustic frequency. 

Subscript 

0, evaluated at the reference condition 

Superscripts 
I perturbation quantity ; 

normalized quantity ; 
dummy variable of integration. 

1. INTRODUCTION 

THE GREY-GAS assumption in radiative transfer has been popular because it shows trends and in 
some cases leads to qualitatively correct answers. However, in any comparison with experiment 
or other attempt to provide quantitatively accurate calculations for a real gas, results on the basis 
of the grey-gas approximation are not trustworthy. It is therefore desirable to have formulations 
that are independent of this restriction. One such formulation, applicable in linearized transfer 
problems, has been given by Gilles et al. [l], who used a modified (nongrey) substitute-kernel 
approximation to simplify, essentially simultaneously, the spectral and angular integrations that 
appear in the radiative heat-flux equation. The simplicity of such an approach is appealing; however, 
evaluating the constants in the substitute kernel may be tedious, and the accuracy of the approxima- 
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tion is open to question. We present here an alternative formulation, also for linearized problems, 
based on the well-known idea of approximating the spectral variation of the absorption coefficient 
by means of grey bands, i.e. by constant values within nonoverlapping spectral regions. In addition, 
we restrict the problem to one spatial dimension and use the exponential approximation to the 
exponential-integral functions. This band-model approach is similar to that employed by Liu 
and Clarke [2] and Olfe and Cavalleri [3], who used two grey bands in conjunction with the dif- 
ferential approximation for radiative transfer. 

We begin in Section 2 by formulating a purely differential equation [equation (811 for the perturba- 
tion in radiative heat flux when radiative transfer occurs in an arbitrary number of grey bands. 
The order of this equation depends on the number of bands and increases by two for each additional 
band. We also discuss the formulation of boundary conditions for use with this equation. To show 
the utility of the grey-band model, we use it in Section 3 to formulate the problem of radiatively 
driven, harmonic acoustic waves in a gas confined between two parallel walls (cf Long and Vincenti 
[4]). We then solve this problem in Section 4 for two grey bands with the approximation, valid at 
low or moderate temperatures, that a certain grouping of dimensionless parameters is small and 
thereby obtain analytical results for the pressure response at one of the walls. Finally, we generalize 
these results to apply to a continuous spectrum by obtaining the pressure response in terms of 
integrals over spectral frequency. This final step, in effect, removes the original grey-band assump- 
tion from the acoustic results. This allows comparison with the solutions from Cogley and Compton 
[5], who solved essentially the same problem but with a somewhat different approximation. We 
will show that we can by the present approximation obtain results for one situation in which the 
approximation used by Cogley and Compton fails. 

The differential equation for radiative heat flux that will be derived [equation (811 is not limited 
to problems of radiative acoustics, but is applicable to any radiative-transfer problem in a plane- 
parallel geometry as long as the variations in thermodynamic properties are small enough that 
a linearized treatment is valid. 

2. FORMULATION OF RADIATIVE HEAT-FLUX EQUATION 

The geometrical arrangement consists of a radiating gas confined between two plane-parallel 
walls. The left-hand wall located at x = 0 is a black body, while the right-hand wall at x = L is 
a perfect reflector. For this one-dimensional geometry the one-sided perturbation heat fluxes 
(right- and left-directed respectively) can be written as (cf. [l]) 

x 
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The subscript 0 denotes the undisturbed reference condition, for which radiative equilibrium 
prevails, and primed quantities are smal1 perturbations from that condition. For example, the 
temperature is given by T = T, -!- T’. The quantities ar, and B, are the monochromatic volumetric 
absorption coefficient and Ptanck function respectively. The perturbations in temperature of the 
gas and the left-hand wall are given by T’ and Tk. The quantity E,, is the exponential-integral 
function of order n defined by 

E,(z) = $ exp ( - ail)ln-2 dl. 

The net monochromatic heat flux $’ is obtained by combining equations (1) according to A’ 5 

Q5’r - K. 
In order to perform the spectral integration of equations (11, we assume that the spectral variation 

of the absorption coefftcient is given by a series of mm-overlapping grey bands, i.e. clVO = OE~,, within 
Av, Obviously, by choosing many bands we can in principle approximate any actual spectral 
variation. Also, as is often done in one-dimensional radiative transport, we assume that the expo- 
neutral-integral functions can be satisfactorily approximated as pure exponentials. Here we use a 
separate exponential approximation for each of the grey bands, i.e. 

E,(Zjl x Ujbj2 - n exp ( - bjzj). 

We make this multiple exponential approximation because values for a and b that give good 
accuracy for a grey gas or for a single grey band can sometimes be found either from comparison 
between exact and approximate solutions (e.g. [SJ> or by matching certain properties of the exact 
and approximate E functions in limiting cases (e.g. [63). Th ese values for u and b that provide good 
precision usually depend on the optical thickness of the gas and hence on the value of the grey-gas 
or single-grey-band absorption coefficient. Thus, in an application of the present technique, the 
user can if he wishes choose values for c”~ and bj that are based on the individu~ optical thicknesses 
or absorption coefficients of his multiple grey bands 

With the multiple-grey-band assumption and the exponential approximation we can write the 
net flux q;’ in each band as 

where 

The total thzx qs’ that interacts with the gas is obtained as in [1] by integrating qr over those spectral 
frequencies for which the absorption coefficient GL,, is nonzero and is given by 
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(4) 

where N is the number of grey bands. 
As in the grey-gas situation, a purely differential equation for qy' can be obtained by differentiating 

equation (2) twice with respect to x and eliminating the common terms between the resulting equa- 
tion and equation (2) to give 

In a similar manner, a radiative boundary condition at x = 0 for each band can be obtained by 
eliminating terms between equation (2) and its first x derivative, both evaluated at x = 0. We thus 
obtain 

This boundary condition expresses the energy balance for an element of gas at x = 0 for radiative 
transfer in band ,j. 

A radiative boundary condition at x = L for each band can also be written by noting that there, 
owing to the presence of the perfectly reflecting wall, the net flux must be zero, that is, 

[qgx=L = 0. 

The sets of equations represented by equations (5) and (6) are coupled through the temperature. 
Their solution must therefore be performed simultaneously. 

In some problems (particularly those of radiative acoustics), it is often convenient to use a single 
differential equation that governs the total radiative flux. Such an equation can be obtained by 
eliminating the quantities qy between equation (5) and its even x derivatives in favor of the total 
flux qR' and its x derivatives as obtained from equation (4). A systematic procedure for accomplishing 
this same end is to combine equations (2) and (4) and differentiate the resulting equation 2IV times 
with respect to X. We then eliminate from the evenly differentiated equations (including the zeroth 
derivative) the integral terms, the terms containing the wall temperature, and the terms confining 
the gas temperature evaluated at the wall. Either procedure yields 

This is a ZN-order differential equation for qR'. It can easily be combined with the gas-dynamic 
small-perturbation equations as we show in the next section. The restriction N > 1 is imposed here 
merely to allow us to write the equation in a compact form, When expanded for a given value of N, 
equation (8) contains all the equations for smaller values of N, including N = 1. These equations 
can easily be recovered by setting as many of the aj’s (or Avj’s) as required to zero and then integrating 
twice with respect to x for each band that is dropped. 

The radiative boundary conditions at x = 0 for equation (8) can be obtained in differential form 
by a similar process. We again combine equations (2) and (4) and differentiate the resulting equation 
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2N - 1 times with respect to x. We next specialize these equations to x = 0 and choose from them 
N sets of equations with each set containing N + 1 equations. We then eliminate the integral terms 
from within each of the N sets of equations to obtain N boundary conditions. Because the N sets 
of N + 1 equations can be chosen in more than one way, the boundary conditions are not unique. 
All the sets of boundary conditions that can be derived are nevertheless equivalent. We have not 
discovered any compact way in which to write these conditions and, since they are lengthy, will not 
include them here. 

At the reflecting wall the situation is less complicated. There the net heat flux qR’ is zero and its 
first N - 1 even x derivatives, written in terms of the even x derivatives of equation (2) and specialized 
to x = L, yield the remaining required boundary conditions. This simplification depends, of course, 
on our present choice of a wall that reflects perfectly. If, for example, the wall were black, or only 
partially reflecting, we would obtain other boundary conditions there. 

With the differential equation (8) and its boundary conditions, we have, in principle, a closed 
set of equations from which, given the perturbations in temperature of the gas and wall, we can 
compute the perturbation in radiative heat flux. Note, however, that the differential equation itself 
does not depend on the presence of the two walls, and holds in the absence of either or both. 

3. APPLICATION TO RADIATIVELY DRIVEN HARMONIC ACOUSTIC WAVES 

In this section we formulate a radiative-acoustic problem using the grey-band model of the previous 
section. The problem chosen is that of one-dimensional, radiatively driven, harmonic acoustic 
waves. This problem has been previously solved on the basis of the differential approximation by 
Long and Vincenti [4], who used a digital computer to obtain numerical results. A similar problem 
has also been solved by Cogley and Compton [5], who included a term in the equations of motion 
to account for the presence of viscous damping at the sidewall of an enclosing cylindrical tube. 
In addition, they approximated the right-hand sides of equations (1) by neglecting the integral 
terms and by virtue of that approximation were able to obtain analytical results independent of 
both the grey-gas and exponential approximations. Here we proceed analytically and will obtain 
results for comparison with both of the previous investigations. 

The small-perturbation equations for one-dimensional time-dependent flow of a thermally 
perfect, radiating gas can be written [7] as 

Mass : 

Momentum : 

Energy : 

State : 

ah’ ap’ 
POat-at= - s ’ gdv, 

@a) 

(!%I 

(9c) 
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where r is the time, u’, h’, p’ and p’ are the perturbations in velocity, specific enthalpy, pressure and 
density, respectively, and y is the ratio of specific heats. We define a velocity potential cp such that 
U’ = a@x and p’ = - pod@t, which identically satisfies the momentum equation (9b). We next 
eliminate the thermodynamic variables from equations (9) in favor of the potential to obtain 

i azq a2q y. - i 
-2 

-~- 
ai, at a2 - poa& s zdv, 

%, f 0 

where as,, is the isentropic speed of sound given by aso = (yopo/po)*. 

We now define the following dimensionless variables, parameters, and operators : 

A 

s 
= 8% a26 aqi a2g 

at2 az2 ’ AT = 70% - z 

(10) 

’ (11) 

The quantities Boj and BUj are the Boltzmann and Bouguer numbers [7] written here for each of 
the spectral bands, o is the radian frequency of the acoustic waves, and A, and A, are the isentropic 
and isothermal wave operators. The isentropic operator A, is the normalized left-hand side of 
equation (10) and is related directly to the radiative heat flux through that equation; the isothermal 
operator A, is related to the perturbation temperature by A, = -aTjat where T z Y/T,. These 
relations and the normalizations (11) allow us to write equation (8) as an equation for the normalized 
velocity potential. In terms of A, and A, equation (8) becomes 

Equation (12) is a linear partial differential equation of order 2N + 3 that governs acoustic waves 
in the presence of radiative transfer occurring in N grey bands. As before, the restriction N > 1 is 
imposed only to allow us to write the equation in this compact form. When expanded and specialized 
to a grey gas, equation (12) reduces properly to the grey-gas equation [7]. 

We are considering harmonic acoustic waves here. We therefore let 

(p = T C, exp(c,X + if), 
lVl=l 

(13) 

and substitute this expression into equation (12) to obtain the characteristic equation for the 2N 
complex quantities c,. (The quantities C, are found by application of the appropriate boundary 
conditions, which can also be written in terms of cp.) This procedure gives c, as the roots of the alge- 
braic equation 
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N 

i( - 1 - c2) fi (c2 - b;BU;) = - (- y(J - 2) 2 
1.l 

16ajBuj N 

j= 1 
Boj kGi (c2 - b,ZBu,2) 2 A’ ’ 1. (14) 

j=l kfj 

This is as far as we will carry the analysis in so general a form. Equation (14) could, of course, be 
solved by means of digital computer for arbitrary values of the parameters. We present instead an 
approximate solution and further restrict the analysis by using only two grey bands. This latter 
restriction will eventually be removed by inspecting the form of the solution. 

4. TWO GREY-BAND SOLUTION 

For two grey bands the differential equation (12) becomes 

and the characteristic equation (14) reduces to 

(c2 - b;Bu:) (c2 - b;Bu;)i(- 1 - c2) 

16a,Bu, 2 
=- p(c2 - b;Bu;) + Bo(~ - b:Bu;) 1 c2[-j+, - c”]. (16) 

1 2 

Inspection of the characteristic equation suggests that the analysis can be simplified considerably 
if we assume both 16a,Bu,/Bo, and 16a,Bu,/Bo, 4 1 For the moment we regard this as merely a 
mathematically convenient assumption; we will show later that it has physical utility as well. We will 
describe it for simplicity as the approximation 16aBu/Bo Q 1. With this approximation we can easily 
obtain the roots c, of the characteristic equation as expansions in powers of 16aBu/Bo. To order 
16aBulBo we thus obtain 

~3.4 = + b,Bu, 
16a,Bu,(j!, + bfBuf)+ 

Bo,. (1 + bfBu:) 
1 

’ 

c5,,5 = ) b,Bu, 
16a2Bu2(j,,, + b$Bu:)+ 

Bo, (1 + b;Bu;) 
(17) 

These roots give the wave speed and damping of the various left- and right-running acoustic 
waves in the system. The first two roots ci, 2 represent modified-classical waves travelling at the 
isentropic wave speed and damped slightly by the presence of radiative transfer. Note that for these 
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waves there is a separate contribution to the damping from each of the spectral bands. The other 
four roots represent the so-called radiation-induced waves [6,7]. For this two-band model there are 
two sets of such waves, in contrast to the situation for a grey gas [7], where there is only one set. 
The additional set of radiation-induced waves is a direct consequence of the higher order of the 
present differential equation compared with that for a grey gas. To the present order of approxima- 
tion, each set is due solely to the presence of one of the spectral bands. In this sense then, the wave 
speeds and dampings of these waves are uncoupled. 

The extension of these approximate roots to include more bands is obvious: for each new band 
we add a damping term to the roots for the modified-classical wave, and write a new set of roots for a 
radiation-induced wave. 

The amplitudes of the various waves are determined by the driving disturbance and boundary 
conditions. For the driving disturbance we assume that the waves are radiatively driven by a har- 
monic perturbation of the temperature of the wall at X = 0 according to 

(18) 

where TA is the dimensionless amplitude of the driving disturbance. 
Six boundary conditions are required. The first two of these are the fluid-dynamical conditions 

that the velocity must be zero at both walls, i.e. 

acp -= 
as 

0 
jSandL =0 

(191 
I 

where E E LwjasO. At the driving wall two radiative boundary conditions are found by the procedure 
described in Section 2. One of these is, in terms of A, and A,, 

+ 

The other condition (not shown) is obtained simply by reversing the grey-band subscripts in this 
equation. At the reflecting wall and for harmonic waves the two radiative boundary conditions 
simplify to 

a3q a5q -I I ax3 a=L= S x-z = O. (21) 
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In deriving the conditions (21) use has been made of the velocity boundary conditions (19). In none 
of the boundary conditions (20) and (21) however have we assumed that 16aBuiBo << 1. They could 
thus be used, if desired, to obtain a more general solution to the problem. 

We now have sufficient conditions for a solution, since application of the six boundary conditions 
and equation (18) allows computation of the six constants C,. The algebra is lengthy and will not be 
repeated here. The desired result is the pressure response at the reflecting wall, which we present for 
two representative conditions: (1) a nonresonant condition in which the distance between the walls 
is one-quarter of the classical acoustic wavelength (L = 71/2), and (2) a resonant condition in which 
the distance is one-half the classical acoustic wavelength (L = R). In deriving these pressure-response 
equations we make continuing use, where necessary, of the approximation 16aBu/Bo G 1; the 
results are thus applicable only in that approximation With j - p’!pO, the solutions are as follows : 
For the nonresonant case 

y,,b,Bu,16a,Bu, 
- - 
p(x = L = n/2) 

-- [l - exp(-rcb,Bu,)] 
2 Bo, 

-i&e” 
= 

1 + b;Bu: 

yob,Bu, 16azBu, 

2 
___ [l - exp (-nb,Bz+)] 

+ 
Bo, 

1 + b;Bu; 

16a,Bu, 

+ 
7o Bo, 

-------exp (- fbIBu$ + yolpexp (- ~bJhz~ 

1 + b:Bu; 1 + b;Bu; ’ 

(22) 

and for the resonant case 

16a,Bu, 
b,Bu, B. 

16a,Bu, 
b,Bu, ~ 

Bo2 

(1 + b:Bu:)(l + cdth xb,Bu,) + (1 + b$u;) (1 + coth nb2BuJ 

16a, Bu, 
b,Bu, ~__ 

B& r n . b:Bu: 
X 

I 
1 + b:Bu; t2b,Bu, + (1 + b:Bu;)(l + coth nb,Bu,) 1 

b Bu 16Gu2 -1 

2 2 
Be 7-c 

+ 
2b2Bu2 + 

b; Bu; 

1 + b;Bu; (1 + b;Bu;) (1 + coth nb,Bu,) 

16a,Bu, 
-exp(-nblBul) 

. j’O Bo, 

16a2Bu, 
~ exp (- nbzBu2) ^/‘o Bo, 

1 
-1 

0 + b:Bu:) 
-L 

(1 + b;Bu;) * 
23) 
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For present purposes our principal interest in these solutions is to show from them the contri- 
butions and interactions (if any) of the two bands in producing the total response, so that we can 
generalize the solutions to multiple bands and thus improve the accuracy of spectral computations 

Consider first the response for the untuned condition [equation (22)]. Here the pressure is given 
by a sum containing four terms, all of which are of order either l/Be, or l/Be,. The response from 
the single set of modified-classical waves is given by the first two terms, with each of these terms 
representing the contribution from one of the grey bands. The responses from the two sets of 
radiation-induced waves are given respectively by the last two terms, with each of these terms 
being due to oniy one band. Thus, for this untuned condition the pressure responses resulting from 
the two bands are uncoupled. If we had derived the one-grey-band equivalent of equation (22) we 
would have obtained only the first and third terms [8]. We can also recover the one-band solution 
directly from equation (22) either by setting one of the Bu’s to zero or one of the Be’s to infinity 
(the latter corresponds to setting a bandwidth Av to zero) or by setting the Bu’s equal and summing 
the l/Bo’s. 

To generalize the untuned response for additional grey bands we need only add, for each of the 
additional bands, two more terms of the same form as those that already appear in equation (22). 
Following this approach we can extend the equation to an infinite number of grey bands each with 
spectral bandwidth dv, and thus obtain the response as an integral over spectral frequency. We 
accomplish this formally by first noting that as Avj + 0, l/Boj is proportional to Av, [see equations 
(11) and (3)], and by then using the definition of an integral as the limit of a sum.* This procedure 
gives p as 

HZ = L = n/2) 8~~ 

s 

a@, 
-iT,e” = Bo dBv’dT’o {&Bu,,[ 1 - exp (- nb,Bu,)] 

(1 + b,ZBu;) 4aT;/7c 

+ 2 exp [ - (7r/2)b,Bu,]} dv. (24) 

In writing this equation we have redefined the Boltzmann and Bouguer numbers so that Bo is based 
on an infinite bandwith and Bu is based on the spectral absorption coefficient as follows: 

Bo E 
P0ai, 

(70 - l)aT$’ 
Bu, E cl,,aso, 

0 (25) 

where Q is the Stefan-Boltzmann constant. The quantities a, and b, are exponential-approximation 
constants that (as discussed just prior to equation (2)) could be chosen, if desired, on the basis of the 
optical thickness of the gas at frequency v. 

Consider now the tuned response given by equation (23), which has a somewhat different form from 
that of equation (22). The first term-the ratio of the two factors in braces-is due to the modified- 
classical waves and has contributions from each band appearing in both numerator and denominator. 
Each of these contributions is of order either ljBo, or l/Be,, so that as far as the dependence on Bo 
is concerned the response due to these waves is of order 1. Here, in contrast to the untuned situation, 
the way in which the two bands produce the response from the modified-classical waves is coupled ; 
that is, the response is not simply a single sum of terms with one term from each band, but is the 
ratio of two sums. If we had derived the one-grey-band equivalent of this part of the response, we 

* The damping of the modified-classical wave from equation (17) can also be written as an integral over spectral frequency 
by use of this technique. Such an expression might be useful for computing radiative damping of acoustic waves in planetary 
atmospheres (cf. Gille [9]) in which the assumption lbaBu/Bo < 1 is usually well satisfied. 
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would have obtained a fraction that contained identical terms as in equation (23), but for only one 
band. This is exactly the same equation that we recover by specializing equation (23) to one band 
following the procedure mentioned earlier. 

A physical interpretation of the tuned response from the modified-classical waves is helpful 
in justifying our subsequent extension of this response for multiple bands. In the numerator of that 
response the term from each band is proportional to the energy input to that band from the wall, 
while in the denominator the term from each band is proportional to the radiative damping, due 
to that band, of the modified-classical waves [see equation (17)]. Hence the contribution to the 
response from energy input into only one band is affected by the damping due to both bands. The 
complete tuned response from the modified-classical waves is the sum of such contributions. 

The contribution of the radiation-induced waves to the tuned response is given by the last two 
terms in equation (23). This part of the response is similar to that in equation (22) for the untuned 
waves, both in algebraic form and in the fact that the contributions from the two bands are again 
uncoupled. 

Despite the coupling of the bands in producing the response for the modified-classical waves, 
the generalization of equation (23) to include more bands is straightforward on the basis of the physical 
interpretation given above. For each new band we add terms, of the same form as already appear in 
equation (23), to the numerator and denominator of the fraction giving the response from the 
modified-classical waves, and to the sum of the terms giving the response from the radiation-induced 
waves. As before, we can further extend equation (23) to a continuous spectrum by generalizing 
to integrals over spectral frequency. Here we require three integrals, since there are three sums. 
In integral form the response becomes 

--Yn eL. 
s a,b,But dBvidT/, dv 

of0 
(1 +*b: Bu,2) (1 + coth nb,Bu,) 4aT;/n 

L 
70 - 1 a,b,But 71 

Zb,Bu, + 

b,2 But 

(1 + b;Bu,2) (1 + b,ZBu,Z) (1 + coth nb,Bu,) 1 
WdTIo dv 
4r~T& 

% f 0 
.16-i+, 

-x s a,Bu, ev ( - &BuJ d&id T lo dv. 

(1 + b,ZBuf) 4oTiin 
(26) 

a”” f 0 

This equation is unusual in that it cannot be written as a single integral over spectral frequency, 
yet it represents a closed-form solution to a problem in radiative gas dynamics in which the details 
of the spectrum can be treated without approximation. We known of no way, other than the present 
generalization of the grey-band approach, by which this equation can be derived. It cannot, for 
example, be derived by the method of Cogley and Compton [5], because the terms neglected at the 
outset in their approximation are instrumental in producing equation (26). 

Note that the Boltzmann number does not appear in the part of equation (26) resulting from the 
modified-classical waves. The resonant response is thus independent of Bo when these waves are 
dominant, which, because they are strongly enhanced due to resonance, occurs for all except very 
small values of Bu. This independence of Bo was also found numerically by Long and Vincenti 
[4] for a grey gas and large Boltzmann numbers. 
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We now discuss briefly the meaning and range of applicability of the approximation 16aBuiBo 4 1. 
For simplicity, we confine ourselves to a grey gas, which in no way changes the essentials of the 
discussion. In terms of physical quantities and for a grey gas, 16aBujB0 can be written as 

16aBu 
---= 

Bo 

dv T’ 

0 

h’ 

h’ 
(27) 

The quantity in the numerator on the right-hand side of this equation is the perturbation in spon- 
taneously emitted radiative energy in time a/w per unit mass of gas ; the quantity in the denominator 
is the perturbation in specific enthalpy. Hence, the present approximation states that the ratio of 
these two quantities must be small. At low and moderate temperatures this ratio is in fact small 
unless the absorption coefficient is very large or the acoustic frequency very low. The approximation 
therefore applies well in laboratory situations [8] and in planetary atmospheres. In stellar atmos- 
pheres, on the other hand, where temperatures are high, it would not be expected to apply well, 
if at all. 

We now discuss briefly the relationship of the present work to that of Cogley and Compton [5]. 
The untuned response obtained here is essentially the same as that obtained in [5]. In fact, with 
the appropriate specializations and changes in nomenclature, the substitute-kernel counterpart of 
equation (41) of Cogley and Compton becomes identical with the monochromatic counterpart of 
the present equation (24). In contrast, the tuned responses are considerably different. The reasons 
for these facts reside in two important differences between the analyses, both of which affect the 
tuned, but not the untuned response. 

The first of these is the presence of viscosity in the Cogley-Compton analysis. As mentioned at 
the beginning of Section 3, Cogley and Compton incorporated into the equations of motion a 
viscous term (to account for effects at the sidewall of a tube), which causes a viscous damping of the 
acoustic waves. (We could also have included that term in the present analysis, but we omitted it 
in order to emphasize the spectral aspects of the problem.) Because in the untuned situation the 
gas motion is small, the viscous damping has no influence (to the order of the solution) on the 
untuned response of [5]. Hence it is permissible to ignore the viscous aspect of the Cogley-Compton 
analysis in making the comparison between that work and the present work for the untuned 
situation. For the tuned situation, however, where gas motion is relatively large, the presence of 
the viscous damping exerts an important influence and leads to the differing results. 

The second difference between the analyses is in the way the assumption 16aBu/Bo + 1 has been 
applied. Cogley and Compton in effect made the assumption at the outset that the temperature 
perturbation in the gas relative to the temperature perturbation of the wall, T’/T:, was a small 
quantity of order 16aBujBo and, consistent with this assumption, retained terms of order 16aBujBo 
in their analysis. The present work makes the less restrictive assumption that 16aBujBo 3 1, which 
places no restriction on the size of the temperature perturbation [other than that it is small enough 
to satisfy the small-disturbance equations (1) and (9)]. For the untuned situation, the temperature 
perturbation computed on the basis of the present approximation is indeed found to be of order 
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16aBu/Bo; hence the agreement of equation (24) with the CogleyCompton analysis. For the present 
tuned situation, with the only damping being radiative, T’/TL is found to be of order unity, thus 
violating Cogley and Compton’s basic assumption. In fact, their method, when applied to the 
present inviscid problem predicts an infinite tuned response. They were able in their work to 
obtain an expression for a tuned response only because they included the side-wall viscous damping. 
As noted in their paper, their tuned result is valid only when the viscous damping is much larger 
than the radiative damping of the modified-classical wave; and the converse, obviously, is true of 
the present, inviscid, tuned result. 

p(a=i) ._ I-I G 
10-J 

I 

FIG. 1. Dimensionless pressure amplitude at reflecting wall 
as a function of Eu for a grey gas with y0 = 1.25. 

Finally, in Fig. 1 we compare the present results, specialized to a grey gas, with the results given 
by Long and Vincenti. Those authors did not make the assumption that 16&u/& 4 1, but did 
a complete numerical solution (computer-generated) to the full linearized grey-gas equations 
In making this comparison we have chosen a = 1 and b = J3 to correspond (approximately) to 
Long and Vincenti’s use of the differential approximation. The agreement is seen to be very good 
The small differences result primarily from a slight difference between the radiative boundary 
conditions derived for the differential approximation and those derived for the exponential approxi- 
mation with a = 1 and b = ,/3. This comparison in effect verities the validity of the approximation 
16&u/& 4 1 for the range of parameters shown on Fig. 1 

5. CONCLUDING REMARKS 

The development of the differential equation (8) for the multiple-band radiative heat flux is 
dependent here on both the one-dimensional geometry and linearization of the radiative-flux 
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equation. These specializations are appropriate for the application to one-dimensional radiating 
acoustic flow. Neither, however, is critical. Equation (8) can be generalized both for multi-dimen- 
sional geometries within the framework of the differential approximation, and also for a nonlinear 
situation. References [2] (multidimensional, nonlinear) and [3] (one-dimensional, nonlinear) 
provide two-grey-band examples. The application of this technique is thus not restricted to problems 
of radiative acoustics. 
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FORMULATION A BANDES MULTIPLES POUR LE TRANSFERT PAR RAYONNEMENT 
DANS UN GAZ LEGEREMENT TROUBLE, AVEC APPLICATION A DES ONDES 

ACOUSTIQUES SE PROPAGEANT DE FACON RAYONNANTE 

R&&-Une equation differentielle linearisbe relative a un flux de chaleur rayonnant est obtenue pour 
un gaz non gris qui est en Cquilibre molbculaire local et qui est ltgbrement perturbt autour de son equilibre 
rayonnant. Cette equation est etablie pour une gtometrie a plans paralleles en supposant que le coefficient 
d’absorption spectral peut etre reprtsente par un nombre arbitraire de bandes grises et en utilisant I’approxi- 
mation (exponentielle) apprdpriC. L’ordre de l’equation est 2 N oh N represente le nombre de bandes grises. 
On discute la formulation des conditions aux limites associees a I’bquation. L’equation est applicable aux 
problemes de transfer? par rayonnement monodimensionnel chaque fois que I’on considere des petites 
perturbations a partir d’un &at de reference uniforme. 

L’inttrb de I’tquation est demontre en I’utilisant pour resoudre un probleme d’acoustique, specifique- 
ment celui d’ondes acoustiques harmoniques conduites de facon rayonnante dans tm gaz entre deux parois. 
Des solutions analytiques concemant deux bandes grises sont obtenues pour la rbponse de pression a la 
paroi non emettrice sur laquelle existe une approximation de temperature basse ou mod&e. Ces solutions, 
relatives aux deux bandes grises sont telles que I’on peut les ttendre d’abord ?I de multiples bandes grises 
par les sommations adequates, et Bnalement a un spectre continu par un passage a des integrales sur la 
frbquence spectrale. Cette extension finale, en effet, modifie I’approximation originale du modMe de bandes 

dans ce probleme d’acoustique particuher. 
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EIN VIELBANDENANSATZ FiiR DEN STRAHLUNGSAUSTAUSCH 1N ElNEM LEICHT 
GESTdRTEN GAS, MIT ANWENDUNG AUF STRAHLUNGSBEDINGTE AKUSTISCHF 

WELLEN 

Zusammenfassun-Eine linearisierte Differentialgleichung wird angegeben fiir den Warmetluss durch 
Strahlung im Falle eines nicht-grauen Gases, das in lokalem molekularem Gleichgewicht steht und vom 
Strahlungsgleichgewicht her leicht gestiirt ist. Diese Gleichung wurde hir eine plan-parallele Geometrie 
abgebildet, wobei hir die spektralen Absorptionskoefhzienten eine willkiirliche Anzahl van grauen Banden 
angenommen und die lexponentielle) “Ersatzkernnahcrung” verwendet wurdc. Die Gleichung ist van 2 
N-ter Ordnung. wobei N gleich der Anzahl der grauen Banden ist. Es wird such das Aufstellen van Rand- 
bedingungen zum Gebrauch der Gleichungen diskutiert. Die Gleichung ist bei allen Problemen ein- 
dimensionaler WBrmestrahlunganwendbar,fallsklein Abweichungen van einem homogcnen Bezugszustand 
betrachtet werden. 

Die Brauchbarkeit der Gleichung wird dadurch gezeigt dass mit ihrer Hilfe ein Problem der “Strahlungs- 
akustik”~ speziell das der durch Strahlung verursachten harmonischen akustischen Wellen in einem Gas 
zwischen zwei Wanden ~-gel&t wird. Analytisch werden Zwei-Graubanden-Losungen tir das Drucksignal 
an der passiven Wand abgeleitet, was, praktisch eine Naherung fur niedrige oder mittlere Temperatmen 
darstellt. Diese Zwei-Graubanden-Liisungen sind so geartet, dass sie zunlchst durch passende Summationen 
m Viel-Graubanden Losungen erweitert und schliesslich auf em kontinuierliches Spektrum durch den 
ijbergang zu lntergralen iiber die spektralen Frequenzen verallgemeinert werden kiinnen. Diese letzte 
Verallgemeinerung beseitigt in diesem speziellen akustischen Problem die ursprtingliche Banden-Modell- 

Naherung. 

MHOFOHOJIOCHAR TPAHTOBHA JIYYHCTOFO HEPEHOC4 B CJIABO 
B03MYIIJEHHOM I’A3E B HPMJIO’HCEHBH H I’EHEPHPYEMbIM 

MSJIYYEHHEM AKYCTRYECKBM BOJIHAM 

AHHOTaqWJI-HoHyqeno ~aneapnaosannoe cyrybo ~n@$epenqnanbnoe ypannenne nysuc- 
TOrO TenJIOBOrO noToKa AJn=I Heceporo ra38, HaxoAbnqerocfl B JIOKaJIbHOM MOJIeKyJInpHOM 
paBHOBeCllI4 II CJIerKaOTKJIOHfIIO~erOCnOTJIyYIICTOrO paBHOHeCHfI.3TO ypaBHeHlle BbIBeAeHO 
AJIII I~nocKonapa~neJrbIro~reo~eTp~I~~npeAno~o~eH~~~03~I0~~0cTIIBbIpa~eIII~n Koa@$nIn- 
IIeHTa CneKTpaJIbHOrO IIOrJIOIIJeHIIR Yepe3 npOII3BOnbHOe YIICJIO CepbIX nOJIOC II C nOMOIIIbI0 
(3KCnOHeHnIIaJIbHOI%)anIIpOKCMManMII nyTeM 3aMeHbI nApa. nOpFIAOK ypaBHeHIIn paBeH 2A;, 
rAe ~eCTbYllC~OCepbIXnOnOC.~aCCMOTpeHbITaK~erpaII~IYIIbIeyCnOBllRAa~IHOrOypaBHeH~In. 
YpaBHeHIIe MOEIHO IICnOZIb30BaTb B OAHOMepIIbIX3aAaYaxJIyYIIcToro nepeHoca npII paccMoT- 
peHHI4 He6Onbwx OTKJIOHeHIIfi OT OAIIOpOAHOrO HaYanbHOrO COCTORIIIWI. 

~pI'IMeIIr?MOCTb ypaBHeHIUI AeMOHCTpMpyeTCH Ha IInIIMene peIIIeHIIH 3aAaYIf JIyYIICTOn 
BKyCTRKII, a InIewIo, Ira npIwepe reHepnpyeMbIx IIanyYeIIIIeM aKycTIIYecKIIx BonH B raw 
MeH(Ay AByMR CTeHKaMR. PeIIIeHIIn C AByMfI CepbIMII nOJIOCaMLi nOJIyYeIIb1 Ann II3MeHeHIIH 
AaBJIeHIIK Ha HenOABPIHcHOti CTeHKC! C nOMOIIIbI0 annpOKCIIManIIII HM3KIIX IiJIII CpeAIIIIx 
TeMnepaTyp.3~npellreHsncA~y~nCepbIM~ nonocaM~npeAcTan.wnoT co6oiiTa~1Ie pemenmn. 
KOTOpbIe nyTeM BbInOJIHeHIIR COOTBeTCTByIOIIJIIX CyMMIipOIIaHIIti CHaYaJIa MOWHO IIpllMeIIIITb 
K MHOrOYIICJIeHHbIM CepbIM nOJIOCaM II, HaKOHen, K 6eCKOHeYHOMy CneKTpy C IIOMOIIIbIO 

nepexoAa K InITerpanaM no CneKTpaJIbHOfi YacToTe. QaKTMYecKII noc.neAKee I4cKnIoYaeT 

nepBoHaYaJIbHyI0 anIlpOKCIIManIlI0 C nOMOIIIbI0 MOAeJIII nOJIOC B 3TOfi YaCTHOa aKycTI'IYecKofi 
3aAaYe. 


